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Abstract: Rotationally inelastic scattering of rare gas atoms and oriented NO molecules exhibits a
remarkable alternation in the sign of steric asymmetry between even and odd changes in rotational quantum
number. This effect has also been found in full quantum-mechanical scattering calculations. However, until
now no physical picture has been given for the alternation. In this work, a newly developed quasi-quantum
treatment (QQT) provides the first demonstration that quantum interferences between different orientations
of the repulsive potential (that are present in the oriented wave function) are the source of this alternation.
Further, from application of the treatment to collisions of nonoriented molecules, a previously unrecognized
propensity rule is derived. The angular dependence of the cross sections for excitation to neighboring
rotational states with the same parity is shown to be similar, except for a prefactor. Experimental results
are presented to support this rule. Unlike conventional quantum-mechanical (or semiclassical) treatments,
QQT requires no summation over the orbital angular momentum quantum number / or integration over the
impact parameter b. This eliminates the need to solve large sets of coupled differential equations that
couple /and rotational state channels among which interference can occur. The QQT provides a physical
interpretation of the scattering amplitude that can be represented by a Legendre moment. Application of
the QQT on a simple hard-shell potential leads to near-quantitative agreement with experimental
observations.

1. Introduction This dependence can be expressed by the molecular steric

Inelastic scattering of open-shell molecules provides detailed asymmetry ratio §:

information on collision-induced energy transfer, necessary for B
understanding fundamental processes in chemical reaétfons. S = %r-no — 9R-ON 1)
X ; ; —f
It has been a long-standing goal in molecular sciences to steer Or-Nno T Or-on
chemical reactions, and for this it is a prerequisite to understand
and predict the outcome of a reactive encounter. One way toin which or-no and or-on denote the cross sections for
achieve this goal is to exploit nature’s preference for direction- rotational energy transfer from the initial (i) state to the final
ality and to control (steer) a reaction by orienting molecules (f) state when the rare gas atom R impinges onto the N-end or

before they collide and eventually react. the O-end, respectively.
Measurements of rotationally inelastic scattering of rare gases In experiments described in refs-8, a hexapole has been
with oriented NO molecules-i.e., N-end or O-end collisions used to state-select NO in the upper component (—1) of

have shown a large dependence on the initial orientdtidn.  the A-doublet of the’[1y,, rotational ground statg € 1/,), where
€ is the symmetry indexs(= —1, 1) andj the rotational angular

R
x\L/gi‘gegngbeg'rf:t?rgmerdam' momentum quantum number. The NO molecules are subse-
$ Sandia National Laboratories. _ guently oriented in a homogeneous electrostatic field. When a

(S U}?'\(]erSIﬂadHC%mpltliFefeA?e Mgdrld’\-/‘ Science2001 204 832 beam of Ar or He crosses the beam of oriented NO, collisions

ohgucnl, H.; SUZuKi, T.; exander, . clenc 3 . . . . .
(2) Levine, R. D.Reaction DynamicsCambridge University Press: Cam- 'ndyce 'rotatlonal excitation Qf the NO. m0|9CU|'eS from the
bridge, UK, 2005. rovibrational ground state to higher rotational levgls:(/2, Q

(3) van Leuken, J. L.; Bulthuis, J.; Stolte, S.; Snijders, J.GBem. Phys.
Lett. 1996 260, 595.
(4) de Lange, M. J. L.; Drabbels, M.; Griffiths, P. T.; Bulthuis, J.; Snijders, (6) de Lange, M. J. L.; Stolte, S.; Taatjes, C. A.; Klos, J.; Groenenboom, G.
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Figure 1. Dependence of the observed and theoretical steric asymmetry

ratios on the rotational excitatioj = j’ — j with Q' = 1, ¢ = —1,
plotted for He colliding with NO aEy, = 514 cnt? (top)® and for Ar with
No atEy = 475 cn1t (bottom)?® If collisions onto the N-end have a larger
cross section for excitation to a certain rotational states, positive, and
vice versa. The experimental steric asymm&#&has been multiplied by
—1 to match the plotted theoretical res8lt..6 There still is an unresolved

The conventional exact CC solution of the scattering problem
of a rare gas atom R and a heteronuclear rigid diatomic (NO)
requires the expansion of the incoming plane weeinto an
infinite sum of Legendre polynomiaR(cos6), wheref is the
scattering angle. Each(cos#) is multiplied by an incoming
and outgoing spherical waee<R-1712)/(kR) to yield the proper
plane wave. The absolute value of the position vector is written
as R and the orbital quantum number &sThe incoming
wavenumbek is given by

1
K==
h\/(“'No+

The semiclassical impact paramebefsee Figure 2) is related
to the orbital angular momentum quantum numbas

2,
) (2)

M)/ (MyoMg)

I+, 2
K ©)

o]

The quantum numbércouples with the NO rotational quantum

sign discrepancy between theory and experiment, as discussed in detail innumbe'] to yield the total angular momentum quantum number

refs 7 and 11.

=1, e—j, Q' €). Qisthe projection of the electronic angular
momentum on the molecular axis, agdis the absolute value

J. Both J and the overall parity of the total wave function are
conserved by the scattering Hamiltonian. To solve the- N©®
inelastic scattering problem &; ~ 500 cnt?!, the maximum
value ofJ becomes as large as 120233 At each value of],

of this projection. Laser-induced fluorescence (LIF) was used one has to solve a large set of coupled differential equations
to measure the ratio of inelastic collision cross sections in the that contain all relevant scattering channigls €2, ande that

two orientations in these experimenrts®

Until now, no clear physical explanation could be given for
the observed dependenceSis on the final rotational state of
the NO molecule: collisions with an odd change in rotational
quantum numbeAj = |’ — j have a strong preference for the
N-end, whereas final rotational states with e¥gmesult mostly
from O-end collisions. A full quantum treatment (using HIBRI-
DONB®89 yields a fair agreement with the observed orientation

influence the outcome of the scattering process. In the example
of He—NO, the number of coupled differential equations that
need to be solved numerically is typically as large as 1300 at a
single value of] and parity!? State-of-the-art computational
possibilities still exclude exact calculations on moleeule
molecule scattering, for which there are many more channels.
An exception is the case of low collision energies or large
splitting between the rotational states »{lke molecules).

dependence of the integral cross section but provides noConventional quantum treatments provide good qualitative
understanding of the undulatory dependenc&ai Aj.20 In results, but these elaborate numerical methods yield little insight
conventional scattering calculations, the desired cross sectiongnto the actual physics behind phenomena and their behavior
are obtained from multiple summations over products of under different circumstances. Calculation times are often too
T-matrix elements and provide no intuitive picture of the long to adjust the input parameters and learn the behavior of
underlying collision propensity. Theoretical exact close-coupling the system as a function of these parameters. To overcome
(CC) calculations and experimental results are presented intheoretical limitations, a large number of approximative methods
Figure 1 to illustrate the dependencebn Aj. to solve inelastic scattering problems have been developed since

Alexander and Stolfeshowed that the undulatory behavior the 19608 Among these, the semiclassical version of the
of Sis insensitive to the angular dependence of the long-range infinite order sudden (I0S) approximation has turned out to be
part of the A—NO potential. Its most prominent features are particularly useful, as it facilitates rapid calculatitn?®
governed by the anisotropy of the repulsive part of the potential, ~Generally speaking, there are two types of sudden ap-
to which Sis very sensitive. However, Alexander and Stblte proximation. In the first one, the molecular axis is assumed to
did not succeed in establishing an explanation for the observedremain fixed in space, and the scattering paths are fully
alternation ofS—+ as a function ofAj = j' — j, nor to provide determined by the isotropic part of the potential. A rotational
a clear link between this behavior and the shape of the transition probability is treated as a time-dependent perturbation
anisotropic potential. In this paper we will explain the observed resulting from the anisotropic part of the potential. The
steric effects by introducing a quasi-quantum treatment (QQT) - — _ -
of the collision problem. The alternation between N-end and (3] Gt G G mivate commmimoatone. 3008, - 02 12175
O-end preference is demonstrated in this work to correspond (13) Gijsbertsen, A.; Linnartz, H.; Rus, G.; Wiskerke, A. E.; Stolte, S.; Chandler,

. . D. W.; Klos, J.J. Chem. Phys2005 123 224305.

to a quantum interference phenomenon between scattering(14) Arthurs, A. M.; Dalgarno, AProc. R. Soc. (London), Ser. 296Q 256,

events from different molecular orientations. 540.
(15) Schinke, R.; Bowman, J. MRotational Rainbows in AtorDiatom

Scattering Springer-Verlag: Berlin, 1983; p 61.

(9) Alexander, M. H.; et al. HIBRIDON (http://www.chem.umd.edu/physical/
alexander/hibridon/).
(10) Alexander, M. HFaraday Discuss. Chem. Sat999 113 437—454.
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(16) Buck, U.; Khare, V.J. Chem. Physl977, 97, 215.
(17) Dickenson, A. S.; Richards, [Adv. At. Mol. Phys.1982 18, 165.
(18) Korsch, H. J.; Ernesti, Al. Phys. B1992 25, 3565.
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Figure 2. All orientations are present in the oriented wave function. Constructive and destructive interference between these waves will occur, dependent
on the difference in path length. The potential can cause scattering under a certain angle for many different impact parameters. Note that éireshard sh
drawn here, the kinematic apéecoincides with the surface normal

exponential form of the&S-matrix is not approximated, but the reasonable differential cross sections quantized in the space-

resulting phase shifts are from a first-order approximation of fixed frame by calculating and transforming only then = 0

the anisotropy of the potential. The angle between the specifiedscattering amplitude from the KA frame for a givgn— j'

molecular axis and the position vectBrbetween the centers  transition?8.2°

of mass of the atom and molecule is the main collision A distinctive quasi-quantum treatment (QQT) is presented

variable!®-21 in the current study, where thgl’, andJ quantum numbers are
Following Curtiss??2 Pack?® and McGuire and Koutf de- replaced by angular variables that provide a direct connection

scribed collisions of atoms and diatomics in terms of body fixed between the incoming and outgoing states and momenta. The

or rotating coordinate frames. In this second type of sudden present work builds on pioneering work of Hoffm#hwho

approximation, the molecular axisis assumed to be fixed in  developed a classical kinetic theory for a mixture of dilute gases

respect taR and not in spaceR-f = cosyg). The centrifugal of rigid convex molecules. Molecular orientation variables, not
term in the Schidinger equation is simplified by approximating  impact parameters, were used to evaluate the collision integrals.
I =landl' =1 (with | andl’ the initial and final orbital angular ~ Evans and co-workets3? succeeded in extending Hoffman’s

momentum), which drastically reduces the number of coupled angular parametrization to the calculation of the classical
equations. This decoupling of the centrifugal barrier is also bimolecular rate constant, the energy-dependent reaction cross
referred to as the “centrifugal sudden approximation”. It leads section, and the steric dependence of the differential cross
to a phase shift calculation that is of infinite order in the sections for general diatordiatom collisions. In the present
anisotropy of the potential for each orientation anglef the study, we will exploit thd, I', J replacement by angular variables
molecule. When the energy of the rotational states is taken into to gain understanding and to calculate differential cross sections
account, one refers to this method as the “coupled states” (CS)and steric asymmetries for scattering on anisotropic (hetero-
approximation. When this energy is ignored, one speaks aboutnuclear) potentials. The straightforward expressions derived in
the “infinite order sudden” (I0S) approximation. this way provide an intuitive basis for understanding the source
Today, the 10S approximation is often applied when one is of the observed steric asymmetry.
prevented from carrying out numerically demanding close- This paper is organized in six sections and Supporting
coupling calculations for practical reasons. The IOS and CS Information. Section 2 describes the main ideas behind the QQT
approximations usually yield satisfactory results in the calcula- and applies it to both fully state-selected, nonoriented molecules
tion of m, m degeneracy-averaged collision cross sections, but (section 2A) and oriented molecules (section 2B). A previously
they are well known to err in predicting the, m' or steric unrecognized propensity rule for the differential cross section
dependence of the inelastic collision cross sectiorad m' follows from this treatment. In section 3, a hard-shell ap-
are the projections of the total angular momenjwm a space- proximation is introduced to obtain the molecule-fixed scattering
fixed axis). This shortcoming can be alleviated by assuming a amplitude. This scattering amplitude, which contains the phase
hard-shell-like “point contact interaction” (PCI) at the turning shift, is necessary in order to obtain quantitative results from
point2526Khare, Kouri, and Hoffma#-28subsequently showed  the QQT. The gquantitative QQT results are discussed in section
explicitly that there is a propensity for preserviggvhen using 4 and compared to experimental results. Some conclusions and
an apse (geometric or kinematic) as a quantization axis. Thea future outlook are given in section 5. In the Supporting
two apses coincide for elastic collisions and point about parallel Information, a short discussion is given concerning the impact
to R at the turning point in the case of a near-isotropic (near- the QQT has on the discrepancy in the sign of the steric
spherical) potential. The kinematic apse (KA) direction is that asymmetry ratid:!* This discussion directly relates to our results
along which momentum is transferred in the hard-shell ap- but is not the central focus of the present study.
proximation. In general, the kinematic apseAp dependent )
while the geometric apse is not. It was shown that one can obtain2- Quasi-Quantum Treatment

: - N . The QQT aims at the simplification and approximation of
e R e B B o 1062 47, 4417, exact quantum treatments. It presents an intuitive basis for

(21) Cross, R. JJ. Chem. Phys1968 49, 1753. understanding the physics behind the steric asymmetry-and
(22) Curtiss, C. FJ. Chem. Phys1968 49, 1952-1957.
(23) Pack, R. TJ. Chem. Phys1974 60, 633-639.

(24) McGuire, P.; Kouri, D. JJ. Chem. Physl974 60, 2488. (29) Kouri, D. J.; Hoffman, D. KTheor. Chem. Ac200Q 103 281—-285.

(25) Dickenson, A. S.; Richards, 3. Phys. B1978 6, 1085. (30) Hoffman, D. K.J. Chem. Physl969 50, 4823-4831.

(26) Stolte, S.; Reuss, Atom-Molecule Collision Theory: A Guide for the (31) Evans, G. T.; She, R. S. C.; Bernstein, RJBChem. Phys1985 682
ExperimentalistPlenum Press: New York, 1979; Chapter 5, p 201. 2258-2266.

(27) Khare, V.; Kouri, D. J.; Hoffmann, D. KI. Chem. Physl1981, 74, 2275. (32) She, R. S. C,; Evans, G. T.; Bernstein, R.JBChem. Phys1986 84,

(28) Khare, V.; Kouri, D. J.; Hoffmann, D. KI. Chem. Physl982 76, 4493. 2204-2211.
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more generally— the relationship between inelastic collisions
and the anisotropy of the intermolecular potential.

For scattering trajectories (rays) to interfere, the trajectories
from a single initial state need to be scattered under an identical
angle and into the same final molecular state. The impact
parametelb gives the distance between a straight line along
the trajectory of the incoming particle long before collision and
the (center-of-mass) origin of the potential (see Figure 2). The
orbital angular momentum before collision (with quantum
numberl) is fixed byk and the impact parametbr Tradition-
ally, to calculate differential cross sections, a summation over rig e 3. Part of the incoming momentuiis transformed into rotation.
| is made that in the classical limit can be replaced by integration The orientation of the apse8) and the translational energy loss due to
overb = I/k (for example, see ref 15). For elastic (ateatom) rotational excitatiom\]j fixes the scattering angle.
scattering on a Lennard-Jones type of potential, there are only ] ) )
three trajectories with different impact parameters that lead to the scattering angle of the outgoing momentum for different
the same scattering angfe@nd thus interfere. One of the three final rotational states atsingledirection of the kinematic apse.
trajectories is mostly caused by the repulsive part of the Note that'/om < 8 < ar for scattering wittk' < k. No interfering
potential, and the other two are due to the attractive art. contributions from different apse orientations occur, as there is

In the case of an anisotropic potential, even when neglecting a direct relationship between apse angle and scattering angle.
the attractive part, the repulsive part of the potential allows To find the relationship between the scattering ang)ethe
scattering into a certain angle for a range of impact parameters.incoming momentumkj, and the angle between the apse and
This is demonstrated in Figure 2 using a hard egg-shapedincoming momentum/), the energy of each rotational level
potential. Solving this scattering problem numerically involves  of the NO moleculéE(j) has to be known. The amount of kinetic

a large set of coupled,(, ¢, j', I, €') differential equations at
each value of], which makes these treatments time-consum-
ing.1434Calculating steric asymmetries for theH&O collision
system with current technology takes a set of several parallel
processors several days.

Approximations are introduced to reduce the size of the
calculations. The projectiom, of the total angular momentum
j on an aps@& is approximately conserved during the collision,
when the repulsive part of the potential dominates (in the sudden
approximation). Apse quantization was proposed and demon-
strated to be a feasible approximation by Khare ét##3Later,
Meyer et al. showed experimentally that the apse approximation
yields good quantitative results for (among others)1Ng©
collisions® and Ne-NO collisions?” In this work, the kinematic
apse will be used which- in contrast to the geometric apse
relies on the final rotational state. The kinematic apse is defined
ag’

k —k
k= K|

& = 4)

The spherical angles which define the direction of the kinematic
apse in the collision frame(= k) are defined ag anda. The
orientation of the molecular axis with respect to the kinematic
apse is given by the spherical anglesand ¢,.

In the QQT, the commonly used sum ovéor integral over
the impact parametdn) is replaced by an integral over the apse
anglesp anda. The scattering anglé is determined fully by
the angles of the kinematic apse with the incoming momentum
and by the final rotational state. When one integrates tyer
scattering into the same angle and thus interfering contributions
originate from many values db (see Figure 2), making the

energy that is converted into rotation is given by

1
2u

whereu is the reduced mass. The relationship betw&emd
B can be written explicitly as

E() =5 -(k — K)? (%)

ksing
KIcos| — 2/24E()

¥ = — arcta (6)

In the experiments described in refs 3, 4, 6, and 13, the
molecules are prepared in the upper component ohtdeublet
of the rotational ground statg € Y, Q = Y, ¢ = —1). In
collisions with rare gas atoms, the NO molecules are excited to
higher rotational state§'(Q’, €'). The spin-orbit constani,
and the rotational constai used to calculate the rotational
energy of a NO molecule in the = 0, X?IT state areA; =
123.13 cnT! and By = 1.6961 cntl.38

In the current treatment, the attractive part of the rare-gas
NO interaction will be neglected; the maximum well depth for
He—NO and Ar-NO (25 and 116 cmt, respectivel§®49 is
much smaller than the kinetic energy, compared to a collision
energy of~500 cntl. Only spin-orbit-conservingQ' = Q
transitions are considered. Spiarbit-changing transitions are
expected to be governed by the difference potential energy
surface (PES)Vgi ,2 which is not included in the present
treatment.

The first goal is to calculate the state-to-state differential cross

integral cumbersome to evaluate. Figure 3 schematically showssection, @/dw, which is—for aj, m, Q —j', m, Q' transition—

(33) Pauly, H.; Toennies, J. Reutral-Neutral InteractionsAcademic Press:
New York, 1968; Vol. 7, Part A, p 227.

(34) Althorpe, S. C.; Clary, D. CAnnu. Re. Phys. Chem2003 54, 495.

(35) Khare, V.; Kouri, D. J.; Hoffmann, D. KI. Chem. Physl1981, 74, 2656.

(36) Meyer, H.J. Chem. Phys1995 1028), 3151.

(37) Kim, Y.; Meyer, H.; Alexander, M. HJ. Chem. Phys2004 121, 1339.
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related to the dimensionless scattering amplitude by

(38) Amiot, C.J. Mol. Spectroscl1982 94, 150.

(39) Kios, J.; Chalasinski, G.; Berry, M. T.; Kendall, R. A.; Burcl, R;;
Szczesniak, M.; Cybulski, S. Ml. Chem. Phys200Q 112, 4952.

(40) Alexander, M. HJ. Chem. Phys1999 111, 7426-7434.
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daj'm'gaj,myg, 1 rotational wave function can be expressetf as

do = Ez|fj,m,g—»j',m,g(l9a§0)|2 (7)
12i + 1
. . . . .. lIIJ',FI’E\,Q = JM Dll':;,g(¢alya’0)
The scattering amplitude is defined as the coefficient of the
outgoing wave in o 2i+1_
. = (—1)" /14—7,[)]— m,—o(@27a0) (12)
- ik
YO, e+ Zﬂ‘py,m,g fima—i.mo(?¢) (8) The product of the wave functions that appears in the integral
I kkR of eq 10 can— after using eq 3.116 of ref 42 be contracted
to

Inref 41, it was shown that eq 2 is a proper asymptotic solution

of the Schidinger equation. Integration of the differential cross _ 1
section over & = sin®¥ d¥ dg provides the total cross section IPJ”"L,QIPF%%Q T 4x J' 1o PyaCOSya) +
OjmQ—jme. . . mo

The conlventlonal.scatterlng ampl|t.uf;i,a,gﬂ,-':m,g(z9) can be P, (cosy,)| (13)
expressedinanewly introduced scattering ampligpde—i: n,.o(5)- o'’

The azimuthal anglesx and ¢ are redundant because of
cylindrical symmetry; notex = ¢. The scattering amplitudes  Here, m Q denotes the absolute value of the produg®. We

are related via a Jacobian: apply this result first to fully state-selected molecules (as in ref
13) and after that to oriented molecules.
; )= w‘%‘ g B ) A. State-Selected MoleculesThe pure parity wave function
b, Q' mh.Q sin9{ay| Fme—me for an NO molecule in the apse frame (neglecting Hund tase

mixing) can be written as
Note that eq 9 does not specify the choice of the quantization

axis. Recall that the projection of the total angular momentum ; A 1. A S
on the apse ) is (approximately) conserved during the Mg 2,e0= ﬁ[|],nh,QD+ €li.m,, ~ <1 (14)
scattering processr, = my). Includingm, conservation in the

calculation leads to an enormous simplification. The scattering The parity of a wave function is defined by its behavior under
amplitude in the apse frame (where the afigserves also as  parity transformation (inversion), which acts as a unitary
the quantization axis) is obtained by sandwiching a molecule- operatorP on a wave functiony:

fixed scattering amplitude between the initial and final wave

functions in the apse frame. An analogous equaticaithough Py (r) = w(=1) = py(r) (15)
not in the apse frame- can be found as eq 40 in ref 26. The total parityp of a rotational state (eigenvalue &) is
. provided by Brown et al*?
gj,ma,Qﬂj’,ma,Q(ﬁ) = C(ﬁ)m!rnaiglg]a](Va!ﬁ)“nmaaglj -
p=(-1"" (16)

T 2T
=CB) [y fo Vimea9iah) ¥,
j; 0 TIm@ =TT a d "(;na’g 10 Using the result in eq 13, the differential cross section for
Sinya dg, dy, (10) scattering of = Yo, Ma =12, Q =1, e = j, M=, Q =

i ) . 1,, € is given by
For now we will proceed without quantifying the molecule-

fixed scattering amplitudg—; (ya;3) that connects the incoming do’jzll i i+ Yo 9
and outgoing wave functions and carries their phase sGift. N () sinf3|9p
is a normalization factor that is discussed in detail later (see eq doo 4 sind|ay
18). The angley, of the molecular axis with the apsedy is
assumed to be fixed during the collision. In section 3, a hard-
shell potential will be used to approximaige-j(ya;5), but there

is no restriction to such a potential. The absolute value of the
molecule-fixed scattering amplitude is taken as the square root . e
of the apse-dependent classical differential cross sectiah, d To enhance the readability, subscripts indicating the conserved

dwa = dolsinf d8 da, which is independent of the final ~duantum numberey and< are suppressed. ,
rotational state. The factorC(5) takes care of current density conservation

along the kinematic apse, which lies along the direction of

\| PP (17)
with

0(B) = [ .G (7P (cosy,)d cosf,)

> momentum transfer. The total differential cross section with
9 (yB) = k 3°0(y,) (11) respect to the apse (summed over all rotational states) for
Y Va Isin(3) 9] da inelastic scattering has to be the same as its classical counter-
part:

The integration of eq 10 contains the product of the initial
i 1 i (42) Zare, R. NAngular Momentum: Understanding spatial aspects in chemisty
and (complex conjugate of) the final wave functions. The and physicsJohn Wiley & Sons: New York, 1988.
(43) Brown, J. M.; Hougen, J. T.; Huber, K. P.; Johns, J. W. C.; Kopp, |.;
(41) Lester, W. AMethods in Computational PhysicAcademic Press: New LeFebvre-Brion, H.; Merer, A. J.; Ramsay, D. A.; Rostas, J.; Zare, R. N.
York, 1971; Vol. 10. J. Mol. Spectroscl975 55, 500.
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2 doclas j' + 1/2 2
o =——"] G P (18)
dwa 1€ 4k2
with
do, | 27 Tk (7/ ﬁ)
d;ZSS: 0 j,ma,Q,elpj, Qe — = dVa d¢a
(19)
Recall that
dw, = sinf dp de (20)
In the case of = 1/,, eq 19 can be simplified as
daclass 21w dO(Va;ﬁ) .
d(Ua j(‘) T siny, dya d¢a (21)

The effect of the weall dependence of the phase shift in
gi—j(yap) for neighboringj’ values is suppressed for the

remainder of section 2, argl(y;f) is abbreviated ag(ya;f).

Although the ion images of Figure 4 clearly show the presence
of parity pairs, these images remain unable to give information
on the absolute value of the differential cross sections. To test
the predicted (prefactor) ratios between the differential cross
section within the pairs, these ratios are compared to those
obtained from quantum-mechanical coupled channel (HIBRI-
DONY)? calculationst® The ratios A, between HIBRIDON
differential cross sections within parity pairs are obtained with
a least-squares fit, where

fﬂ do

dw

is minimized. The resulting close-coupling ratios are compared
to those from the QQT prefactors in Table 1. For low final
rotational states, there exists a good qualitative agreement with
the ratios predicted from eq 17, although for the highest
rotational states the agreement is reduced. Until now, no
thorough explanation for the disagreement at high rotational
states has been available, but at this region the contribution of
spin—orbit-changing collisions becomes comparable to that of
spin—orbit-conserving collisions. Additionally, the angular

) (22)

Aj=n dﬁ (withn=1,2,3,.

Aj=n+1 And

In eq 17, it can be seen that the differential cross sections for dependence of the differential cross sections turns out to be more

transitions fromj = /,, e = —1 to two ne|ghbor|ng rotational
states with the same parity (for examgles 7/,, € = 1 andj’
= 9,, ¢ = —1) are similar, except for a different prefactgr (

+ 1/,). This propensity rule immediately follows from eq 17:

Aoy, 1aye=1 9O, o1 g 0=

1 1
d(U '\’5 da) O |f_lg(ya'ﬁ)
P,(cosy,) d cosf,)|?

d01/2,52*1ﬂ5/2,e’=l 3d0’1/2,f:—1a7/2,e'=—1
dw 4 dw

01/ 0074)
P,(cosy,) d cosf,)|?

Aoy, = 1m,e=1 490y, = 19e=—1
2€ 2€ 2€ 2€ 1 i
da) ~ g da) D |‘/:1 g(Va’ﬁ)
P,(cosy,) d cosf,)|?

et cetera.

The current treatment explains the surprising observation that
differential cross sections come in “parity pairs”, as seen inion

imaging (velocity mapping) experimenits.lon images of
product angular distributions for spitorbit-conserving He:

distinctive for larggj’.13

The contra-intuitive result that the differential cross section
to the uppei’ component of each parity pgir— e€'/2 is larger
than that to the lowej’ component opposes the “exponential
gap” modeR44This rule of thumb predicts that the cross section
for a small “gap” (the change of translational energy during
collision) and thus a smajll is larger than that to a higher one.

Application of classicab-matrix theory showed that collisions
between rare gas atoms and nearly homonuéEanolecules
favor rotational transitions witi\j even?® This propensity rule
cannot simply be extended to collisions %1 molecules like
NO. Each rotationaj state carries both parities in the two
components of thé\-doublet. In this work, as well as in that
by Drabbels et al6 the preference of\j for conservation or
breaking of parity was studied. For parity-conserving collisions
of He with NO, it was observed that, f&kj < 4, transitions
with Aj even are preferred, while for parity-breaking transitions
both studies find a preference faj odd transitions. The (2
+ 1) prefactor in eq 17 explains both propensities.

B. Oriented Molecules. The result in eq 13 is applied to
oriented molecules in this subsection. Under the influence of a
static electric orientation fiel®E, the hexapole state-selected
wave function can be described as a linear combination of both
components of the\-doublet?

NO collisions are plotted in Figure 4. The top panel displays
images for parity-conserving transitions, while the lower panel
shows images for parity-breaking transitions. The “parity pairs” 1:™ QEC= ()} mQ.e = — 10k fE) i.m Qe =10

for each final rotational state with identigat- e¢'/2 are grouped (23)

in this figure and spaced from the other images. The intensity The + indicates orientation. For " orientation there is

in the ion images reflects the two-dimensional velocity distribu- : ot VY-

tion of the Ng molecules after collision with a He ai/om The preference for to point parallel to the quantization aanT@),

. : : _ o while for “—" orientation these vectors point antiparallgiZ).
intensity on an outer ring roughly reflects the differential cross The parametersi(E) and A(E) in eq 23 are the mixing
section. For excitation to loy, the NO molecules are mostly coefficients. If the orientation field cannot be assumed to be

scattered in the forward direction, whereas for high final
infinitely high, mixing is not complete and(E) > S(E) > 0,
rotational states, backward scattering is preferred. This can easily, y g d P E) > SE)

with a2 + 32 = 1. For an infinitely high orientation fielt.,
be understood. Glancing collisiorswhere little translational p= y g ”
energy is transformed into rotational energyare forward (44) Joswig, H.; Andresen, P.; Schinke, R.Chem. Phys1986 85, 1904.
scattered, whereas head-on collisions allow for higher rotational (42) McCurdy, C. W.; Miller, W. H.J. Chem. Phys1977 67, 463.

R . (46) Drabbels, M.; Wodtke, A. M.; Yang, M.; Alexander, M. Bl.Phys. Chem.
states and will show mostly backward scattering. A 1997, 101, 6463.
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=75 =85 =95 =105 =113 =123

Figure 4. lon images for He-NC collisions atEy = 514 cnTl. Marked images (*) are from-PQ or Q+R branch transitions. These images are more
sensitive to collision-induced rotational alignment and therefore show more asymmetry than those from single P and R'biEmelpesity pairs are

grouped and separated from the other images by white lines. The image=for-1, j' = 9.5 could not be obtained because of two overlapping spectral
lines. Images fop' = 1, = 6.5 andp’ = 1, )’ = 7.5 form a pair as well, although they are displayed on different rows.
Table 1. Parity Pairs for He—NO Collisions? the apsem in eqs 24 and 25 is replaced by;
(dofdw)| aj=ns1/(doldw) | Aj=n
& . Mas ‘o .
n ] QQT prefactor A, (CC HIBRIDON) “,ma,Q,EwD: ‘J’ma,g =—Q for “+” orientation
1 1 312 1.50 1.54 m,
2 -1 4/3 1.33 1.36 (26)
3 1 5/4 1.25 1.23 m,
4 -1 6/5 1.20 1.30 H ® N H — _ _ %5 D w__n H H
5 1 7/6 117 116 [j,m,Q,E = ‘J,ma,Q = maQ for orientation
6 -1 8/7 1.14 1.25 (27)
7 1 9/8 1.13 1.13
8 -1 10/9 1.11 1.07 . . . . . .
9 1 11/10 1.10 1.32 Recall that orientation is defined such that faf™orientation
10 -1 12/11 1.09 0.88 the molecular axis preferentially is parallel to the quantization
11 1 13/12 1.08 2.50 axis, while for “—” orientation it preferentially is antiparallel.

aA least-squares method was used to find ratios between differential It S_hOUId be noted that, in eq 27, the apse serves as quantization

cross sections from quantum calculations. For the QQT the ratios betweenaxis Z = &. In NO, r points from the O atom toward the N
the prefactorsj{ + 1/,) are provided. The ratio between the differential  gtom. In the apse frame, the-" orientation relates to an-RNO
cross sections for the QQT might be slightly different due to the dependence '
of the phase shift on the final rotational state.

wn

collision geometry and the " orientation to an R-ON
geometry. Transformation from the apse frame to the collision
a(E) = B(E) = 1/+/2, the wave function can then be written as frame— which weakens the orientation effectswill be done

We first focus on this simpler case. Substitution of eq 14 into at a later stage. The orientation-dependent scattering amplitude
in the apse frame follows directly from the substitution of eq

i moO A 5. = m. &.— 13 in eq 10:
|J,m,Q,EmD=J2[|],m,Q,e 10 T m e 1[]1 (24)

1/
24 now yields gllz,:tﬂj’(ﬂ) = ic(ﬁ)i )+ l/2 [gj'—llz(ﬂ) + 9j’+1/2(ﬁ)] (28)
j,mQ,E = ‘j,m,Q = %_ D for “+” orientation with
~ ~ (25)
j,MmQ,E, = —‘j,m,Q = —% D for “—" orientation 9,(8) = ffllgjﬁj.(ya;,b’)Pn(cos;/a) d cosf,)

For convenience, the orientation is for now taken relative to This equation turns out to be very helpful in explaining the
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1 1

do :
— Pg(cosy,) — Pg(cosy,) 1, :t"]+l ] + / sinfAlo
05/, SRALSAL I SRACHY do w o0 singiagi 9+0.08) % G )
: “ /-\ ) i :" ,'-\ "| (33)
onf ./ . S \ N o ! ‘\‘ Y p ',' . o .
Soe MRS b4 ‘." “. ‘ee ".' Substitution 0n+2(8) =~ —gn(B) — Gr+3.(8) ~ —gr-1,(B) yields
-0.5 -05 Comparing the right-hand sides of eqs 32 and 34, one notices
B -05 0 05 1 05 0 05 1 dol/ A +1 i+ /P

C(By ::zg;ggi 19-,(B) F 9j'+1/2(ﬁ)|2
(34)

that they are nearly similar, except for the prefactor ancithe
in the integral, which defines the orientation. The is
exchanged for &, which implies that the orientation preference
is reversed when increasifg— j' + 1.

Incomplete mixing due to finite field strength can be included
s COSYH 05 oo 08 wgyn 05 ! in the model. Application of eq 23 as the initial wave function
leads to the orientation-dependent differential cross section:

dw K2

Figure 5. Example of Legendre polynomials. Roughly speakiRgcos
ya) &~ —Pn+2(C0OSy3) in the (broad) region around cgs = 0. d

Oy, + E—j' j + / ’“(ﬁ)z sin ||
oscillations of the steric asymmet8as a function of the final dw A sin 9{9v|

rotational state. 2
E)g...(8) £ B(E)g._..(3
To obtain a relationship between the relevant scattering o )gJ +erB) £ B( )QJ —en(B)1” (35)

amplitudes, the recurrence relationship for Legendre polynomials The opserved steric asymmetry will, in practice, be smaller than
will be used: what follows from integration of eq 35. Recall that orientation
has been, until now, defined along the apse: the proauct
P ()= ntl, P.(X) — _n_ P ¥ (29 gives the orientation, wherey, is the projection off on the
n+1 n+1 apse. In experiments, molecules are oriented along an electric
field that is usually fixed in the laboratory.
The projection of the total angular momentum on fhaxis
of the collision frame (parallel or antiparallel to the electric field

For largen this reduces to

Pra(X) ~ 2XPy4(x) — Pr(¥) (30) E) is defined bymQ instead ofm.Q, wheremis the projection
of j on theZ-axis that points along the relative velocity. The

Around the center(~ 0), Pn(x) dominates in eq 30. At the  final result is a linear combination oft” and “~—” orientation
edges x| ~ 1), 2 Pn+1(X) dominates. Overall, both terms are  along the apse, weighted by the axis distribution of the selected
equally important a®n+1 is multiplied with (-1 < x < 1). state. There will be a weakening of the steric asymmetry from
Note that the amplitude of the oscillations Bf+1(x) is only the pure apse-oriented state, but the conclusions drawn earlier
slightly smaller than that dPy(x). In Figure 5, some Legendre  on the undulating behavior & remain intact. The laboratory
pO'YnCc)jmiaBo are plotted to illustrate thé:2(x) ~ —Pn(X) and apse frames are related by rotafdhrough the polar angle
aroundx ~ 0. B:

Substitution of eq 30 into eq 28 gives _
lj,m,Q0= Z dh, m(B)li,m,, 0 (36)
(B) ~ ~ G 2(B) + 2 g (74B) cOSY, ™
P_.,(cosy,) dcosg,) (31) In the scattering experiments with oriented NO molecules, the
initial state isj = 1/,. The differential cross section follows as
If the contributions around the waist of the molecules (ggs ~ where mQ/mQ = 1 provides an RON configuration and

= 0) dominate the integral, the second term in eq 31 can be do do
neglected: gn(B) &~ —gn+2(B). This will be the case when the J=UpmQ=Ll, B~ e sinz(ﬁ\ J=YpmQ=TFU B e n

phase shift; close to cogy, = 0 is stationaryt®i.e.,» does not dw N 2) dw
depend on cog,, which is expected for a prolate molecule like ﬁ\dojzl,z,magz H1 B €
NO. Under these conditions, it is easily shown why the co (5} o (37)

orientation preference switches sign when increagingj’ +
1. The + orientation-dependent differential cross section for mQ/mQ = —1 gives an R-NO configuration in the collision

excitation toj’ immediately follows from eq 28: frame withZ = k. Note that 99 < 8 < 18C°, which implies

that the first term with si#(3/2) is the strongest one. The-"

dal/z,iﬁj i+ Y 2., 2 Sin |9 ) orientation in the collision frame is dominated by the™
do 22 C) sinv|av| |9j'—1/2(ﬂ) + gj'+1/2(ﬂ)| orientation in the apse frame because the quantization axis in

(32) the apse frameZ(= a) generally points opposite to that in the
collision frame Z = k). As low final rotational states are usually
Forj" + 1, this results in due to forward scattering (whefe~ 90°), it becomes clear
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Figure 7. Schematic representation of a hard convex shell.

Table 2. Hard-Shell Legendre Polynomial Approximation

4 . . L . . . L . Coefficients As Used in Eq 38
0 20 40 60 80 100 120 140 160 180
T [°] ¢, (Bohr)

Figure 6. Calculated equipotential line and interpolation for N@r, E n for He=NO hard shell for Ar=NO hard shell

= 475 cnT1,%0 and NO-He PESsE; = 514 cn11.3% Coefficients from 0 4.8637 5.8692

Table 2 are used. Note thgg = 0 corresponds to the-RNO configuration, 1 0.1983 0.1516

while yr = 180 corresponds to the-RON configuration. The interpolation 2 0.6908 0.6771

for Ar—NO is based on 9 data points, and that forH\O is based on 37 3 —0.0126 0.0142

points. 4 —0.1497 —0.0999
5 —0.0012 0.0010
6 0.0263 0.0183

from eq 37 why the steric asymmetry has a small amplitude
for low final rotational states. In this case, the two orientations
in the apse framenQ = FY, and mQ = 41, are
approximately equally important for the two orientations in the
laboratory frame: cd§8/2) ~ sird(8/2) if g ~ 90°.

3. Hard-Shell Approximations

To be able to calculate differential and integral cross sections,
it is necessary to provide an explicit expression for the molecule- K
fixed scattering amplitudeg;—;(ya;4) that contains the phase
shift. In this section, a hard-shell potential is applied to obtain
gi—j(yaf). The use of more sophisticated potential energy L9
surfaces— soft and/or including attractiorr is not treated here. ) ) ) ) ]
At our collision energy, the HeNO and A—NO potential 51’9“.'9 8. Assuming a hard shell, the scattering angle is defined by only
. . e incoming momentum, the surface norma{that coincides with the
energy surfaces are reasonably well described in a hard-shelkinematic apséy) and the final rotational state.
approximation. The aim of this work is to obtain a better insight
into the physics of inelastic scattering. calculated using a least-squares optimization routine. Fer Ar
The convex hard shell for Ar colliding with NO is ap-  NO, 9 points were supplied and used for the fit, while forHe
proximated using the 475 crh equipotential surface from  NO the fit was made using 37 points. Thg coefficients
Alexander'sVsum PESSY The shell for He-NO uses the 514 yesulting from a fit to the expansion Wit = 6 are shown
cm-* equipotential surface frosum PESs calculated by KidS. in Table 2. As is shown in Figure 6, both the HEO and the
These equipotential surfaces are taken at the collision energiesnr—NO ab initio equipotential surfaces are excellently described
from refs 4, 6, and 13. The hard-shell ANO and He-NO using eq 38 with the fitted,, constants of Table 2.
potentials are shown in Figure 6. As the amount of available
ab initio points on the equipotential is limited, an interpolation
has been used to establish the shell. The equipotential lines ar
expressed in a Legendre expansion:

The surface normdl — that points perpendicularly to the hard
shell— coincides with the kinematic ap$g. In the hard-shell
eapproximation, the scattering angle is determined only by the
incoming momentum, the surface normal, and the final rotational

P state. This is demonstrated in Figure 8, where the incoming
R(yr) = S ¢.P.(COSYR) (38) momentgmk is decomposed in components pargllal) @nd
perpendicular K) to the shell. The force that induces the
rotation points perpendicular to the shell. The component of
In this equationyris the polar angle between the position vector the momentum perpendicular to the hard shell is reversed and
of the shell and the molecular axis, whil(yr) gives the partly transformed into rotation. The component along the hard
distance from the origin of the potential to the hard shell (see shell, k; is conserved:k’; = k;.
also Figure 7). The coefficients for this expansion have been  The hard shells can be exploited to find the molecule-fixed
(47) Kios, J: Chalasinski, G. Berry, M. T.. Bukowski, R.: Cybulski, 5., Scaltering amplitude. This amplitude for a specific rotational
Chem. Phys200Q 112, 2195. excitation is written as

n=|
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95— (72P) = Goras{ V) C (39) GetasdVa:B) = 4/ P1p2ICOSP| (45)

Thej — j' dependent phase shift is denoted j(y.;), and B
Jeas{ya;B) is a “classical” hard-shell scattering amplitude that The radii of curvaturep, and p; are calculated as
follows from the classical differential cross section in the apse

frame. For a spherical potentighassreduces to the square root py = ﬁ (46)
of the classical differential cross section (in the apse frame): body,
Guasff) = kR Icosp (40) pZZMZ:‘)W (47)
sin

In this caseRs is independent of the position on the hard shell
(yr= ya). Integration of eq 10 for elastic scatterirgdsy(ya;8)/ dCi/dy, is the y, derivative of the arc length of the hard shell

dya = 0 or a constant as a function ¢f, — now yields the in a plane through the molecular axis. The second radius of
classical integral cross section: curvature,pp, is given by the distance from the molecular axis
to the hard shell along the surface normal. Note thai{ya;5)
1 0 p2n 12 . 2 is the square root of the molecule-fixed differential cross section
K2 f -1Jo [kRS |cosf ] docd cosff = 7R do/dw, with respect to the apse. With these results, the treatment

can be applied to provide quantitative results. This is the subject

Note that, in this spherical shell approximation, the current Of the next section.

density conservation parametg(s) reduces to 4. Quantitative Results and Discussion

S : qualitive conciusions. In Secton 2.1, 1 was shown hat e
)" = Rlcosp l/ Z 19 —cerelP)] (41) differential cross sections for collisions with fully state-selected

(nonoriented) molecules show parity pairs and propensity rules.

To calculate the phase shifty.;8) = (k — k')Rs, the hard In sect_ion 2.2, itis grgued why t_he steric z?lsymmet_ry exhibits
convex potential is used. The phase shift is defined as the path®” osculatory_ behavior as afunctlon_ of the final rptatlonal _state.
length difference between a path via the hard shell and the 1€ calculation of the molecule-fixed scattering amplitude
corresponding imaginary path through the origin of the potential obtained from the hard-shell approximation makes it possible

(center-of-mass), divided by the local de Broglie wavelength to obtain quantitative results. In this section, the hard-shell QQT
and multiplied by 2r: will be applied to He-NO scattering to result in calculated

angle-dependent differential cross sections for nonoriented
Y — _ / molecules and steric asymmetries for collisions of He and Ar
1(7aif) Rlye) costa = ra)k s+ ko) (42) atoms with oriented molecules.

Upon substitution of eqs 42 and 45 into egs 35 and 37, and
subsequent evaluation of the integral, the differential cross
section is obtained. Integration of the differential cross section
leads to a cross section that, using eq 1, provides the steric
asymmetryS. Sis plotted in Figures 9 and 10 for two cases:
He—NO with ¢ = 1 and A—NO with ¢’ = —1. Mixing is not
complete, so slightly more NO with = —1 is present than
that withe = 1 before collisions. Mixing coefficients were taken
from ref 6 for He-NO and from ref 4 for A-NO. The QQT
results forScorrespond remarkably well to the measured steric
asymmetries and coupled channel calculations. The experimental
. results are not shown in Figures 9 and 10 for readability, but

2= R{yr) cOSf'r) and r=R{») Sm(sz43) (except for the unresolved sign erféd they correspond well

to the exact (CC) values &that are in the plot (see also Figure
_ dr 1). The amplitude ofS for scattering to thee = —1 state is
Va= —arctara—z (44) smaller than that for scattering to= 1. CC calculations and
experimental results show the same behavior.
Please note that represents in this particular case a position In egs 32 and 34, it was shown tifashows an undulating
on the molecular axis. behavior as a function of the final rotational quantum sjate

The expression fogeasd{ya;B) (€q 11) is no longer given by  These equations, however, give no information about the sign
eq 40. Areas on the molecular shell that have a large radius ofof the oscillation. To get information on the sign of the steric
curvature will contribute more to the scattering amplitude than asymmetry, the phase shift has to be included. In Figure 11,
those with a small radius of curvature. By using the two radii the phase shift (HeNO) for several final rotational statgsis
of curvaturep; and p, that support the differential surfac&sd  plotted (atg = 18C°), as are some corresponding Legendre
as a function ofy, and substituting their product f&®Z in eq polynomials. The dashed line with labghax indicates the
40, one obtains position where the phase shift is maximum (least negative) and

Jh€e

As ko = |k cosp|, it is easily seen that for a glancing collision
the phase shift is zero, while for a head-on collision the absolute
value of the phase shift is at a maximum.

Equation 42 contains botbkr andy.. In Figure 7, it is shown
that— unlike for a spherical shet-the angley, between the
normal (apsefk and the molecular axis is not the same as the
angleygr betweenRg(yr) and the molecular axis.

A unique relationship betweepgr and y, follows if one
transforms the hard-shd®(yr) into cylinder coordinatesz():

As the apse is perpendicular to the hard shell, one gets
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Figure 9. QQT results for the steric asymmetry ratio of H&O collisions
(Q' = 1/,), compared to results of CC (HIBRIDON) calculatidhslixing
coefficients used are(E) = 0.883 and3(E) = 0.470% and the collision
energy is approximately 510 crh The upper panel denote's= —1, while
the lower shows results fet = 1. In the case of perfect orientation (mixing),

some detail. Recall that, in the integral for the scattering
amplitude, a sum of two integrals of Legendre polynomials is
found (eq 28):

.y Y s
bl 2, 2 SiNS|3| 2

do a2 C(B) sin|av| 1G5 —,(B) £ G448
with

1 iy
o= f‘_lgclass(‘ya;ﬁ) en(yaﬂ)Pn(Cosya) d COSﬁ/a).

The “+” defines orientation, whereas thet" indicates an
R—NO collision and the “” an R—ON collision. Recall that

the apse serves as the quantization axis here. Scattering will be
dominated by the value of the Legendre polynomial around the
phase shift maximummax (Wheren(ya;5) = 7may. FOr now, a
spherical hard shell is assumed, G&@s{ya;3) is independent

of ya. Roughly speaking, fof = 6.5 one has

s ~ €M Py(COSY p) = —0.27 &/m

both panels should show the same result, as both components of the

A-doublet are equally populated before the collision.

1 o Qar T T T T T T T T T
0.5- -©- CC calculations
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Figure 10. QQT results for the steric asymmetry ratio of-AXO collisions
(Q' =1, € = 1), compared to results of CC (HIBRIDON) calculaticrfs.
Mixing coefficients used are((E) = 0.832 andB(E) = 0.555% and the
collision energy is approximately 510 cf The upper panel denote's=
—1, while the lower shows results fer = 1. The differences between the
QQT results and the CC results faj < 3 likely originate from attractive

g, ~ €"P_(COSY ) = 0.18 &im= (48)
For an N-end collisiongs + g7 = —0.09 émax appears in the
integral, while for an O-end collision one hag — g7 =
—0.45 émmax, It is easily seen that the latter will yield a larger
contribution to the differential cross section for a transition to
j' =6.5:

doy, - —i=65_ doy, + —j=65

dw dw

(49)

According to eq 1, this will give a negative steric asymmetry,
which is also seen in Figure 9. The steric asymmetry will be
slightly weakened, as explained by eq 36. The valuesfior
Figures 9 and 10 are not calculated using the stationary phase
argument, but the whole integral in eq 32 is evaluated.
Besides integral cross sections and thus steric asymmetries,
the QQT provides differential cross sections. Although until now
no differential cross sections have been measured for collisions
of oriented NO, they are available for collisions of nonoriented
NO with He. Westley et & performed ion imaging measure-
ments using state selection of the NO with adiabatic cooling

long-range interactions that are neglected in the hard-shell QQT calculations.for state selection (both components of theloublet present).

Aoiz et al*® showed that the attractive part of the potential only has
significant influence forAj < 3.

stationary. This position dominates within the integral, which
is enhanced by the fact thgas{ya;3) has a maximum at this
position (the waist of the molecule) as well. Except at the

stationary phase point, the molecule-fixed scattering amplitude

will show oscillations around 0 where the phase is not stationary,
which yields a small contribution in this area. On the other hand

oscillations of the Legendre polynomials, the contribution in

that area will also be close to 0. This is the reason that the cross:

section for excitation to high rotational states vanishes for
glancing collisions with small phase shifts.

To illustrate how the stationary phase defines the sign of the
steric asymmetry, scattering info= 6.5 is discussed here in

Recently, Gijsbertsen et al. performed ion imaging experiments
with hexapole state-selected NO, in which only the upper
component of the\-doublet ¢ = —1) is present3 Some (raw)

ion image$® are shown in Figure 4. The intensity on an outer
ring of these images roughly indicates the differential cross sec-
tion. In Figure 12, some differential cross sections from the QQT
are compared to (extracted) experimental data and data from
close-coupling calculations. The extraction method is explained

. ) . ' inref 13. The QQT results and experimental data are normalized
if there is a too large area of stationary phase compared to thet

o the integral cross sections available from HIBRIDON results
to enable a good comparison of the angular dependence. There
is a difference between the integral cross sections of the

(48) Aoiz, F. J.; Verdasco, J. E.; Herrero, V. J'p8d&danos, V.; Alexander,
M. H. J. Chem. Phys2003 119, 5860.

(49) Westley, M. S.; Lorenz, K. T.; Chandler, D. W.; Houston, PJLChem.
Phys.2001, 2, 473.
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Figure 11. Combination of phase shif (top panel) and the Legendre polynomials (lower panel) fix the sign of the steric asyntndtng phase shift
drawn here is for collisions witf = 180° (incoming momentum lies along the surface normal). The dashed line withvjahghdicates the position where
the phase shift is maximum (least negative). At this point, the phase shift is stationary (the deriy&diue=e 0), which makes this position dominant
within the integral, which is enhanced by the fact thats{ya;) has a maximum at this position. Due to the fact thandk' are larger for A=NO than
for He—NO, the phase function will be steeper for theANO system (see eq 42).
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Figure 12. Several He-NO differential cross sections for parity-conserving transitigns=(p' = —1). The parity pairs (see also Figure 4) are easily seen

in this figure. Both the experimental and QQT results are normalized on the integral cross section from close-coupling HIBRIDON results. Téle hard-sh
approximation causes an underestimation of the differential cross section for low rotational states. For these differential cross sectiarejzono
factors are (from low to high rotational states) 1.51, 1.58, 1.15, 1.18, 0.84, and 0.91.

HIBRIDON calculations and QQT calculations; normalization energy into rotation, the potential is more deeply penetrated,
factors are provided in the caption of Figure 12. This is easily causing underestimation of the cross section for low rotational
explained by the use of a hard shell. To transfer a lot of kinetic states. Scattering int®' = 3/, was not taken into account in
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the QQT, which should result in too large a differential cross in the case of head-on collisions than in the case of glancing
section overall for scattering into tHe' = 1/, states. collisions. Low rotational states will then show a larger cross

5. Conclusions section compared to the current results.
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